Mission: Birthday Party

My mission was clear, though far from simple.

It was my responsibility to recruit and train the next generation of scientists, such that they may find a way out of this terrible mess we had gotten ourselves into. Global warming, food shortage, antibiotic resistance: it was clear that we stupid adults were fairly inept at taking care of ourselves and our environment. My recruitment officer, Mollie, had taken it upon herself to use her birthday celebrations a way to bring together the best minds of her generation (*ahem* classroom) such that I could hope to prepare them for what lay ahead.

Many people told me I was foolish to expect so much from 8 year olds. Did they really have it in them to understand the fundamental states of matter AND their transition states? The complexities of pH, density and chemical reactions?

IMG_3558

The recruits enjoying some vital R&R in preparation for their rigorous training

It is true, I cannot lie: at times I did fear I had taken too much on. But I held onto my hopes that my students, though short and easily distracted, would have a number of other key qualities which would render them perfect scientists.

Indeed, when I finally coaxed them away from their chocolate, footballs, trampolines and playhouses, I quickly realised that 8 year olds are not lacking in these qualities. In particular, I am of course talking about creativity, playfulness and inquisitiveness. Vital skills for any scientist worth their salt! I was also made to feel much more confident when I saw the quality of the resources at our disposal. The laboratory was beyond satisfactory.

IMG_3544

Our first task (I brought along my trusty aide, confidante and housemate to assist on the day in question) was to introduce the students to the three major states of matter. This lesson was very straightforward, and it was streamlined with the provision of:

  1. A simple diagram,
particle model

Solids, liquids and gases

2. Hands on examples (ice cubes melt when you transfer them some heat energy from your hands, water turns into stem when you transfer heat energy using a kettle)

3. Thought provoking questions relating to a familiar context i.e. the human body. (who can name a GAS inside the human body?! 😉 )

IMG_3566

FART JOKES

We were ready to enter the laboratory. Inside, I had prepared learning materials such that the recruits would become familiar with several new concepts.

Unfortunately, the laboratory had taken on the smell of wet cabbage; it was integral that we had buckets of red cabbage water on hand for the duration of our experiments. Reb cabbage water has the interesting quality of being a colour change “INDICATOR” – which just means it can tell us things when it changes colour. In particular, it can tell us whether a chemical is an ACID, BASE or NEUTRAL.  “What do these strange new words mean?”, my curious little students asked. I assured them, “Scientists are really keen on grouping things together. How many ways do you think I could separate you into groups? That’s right: eye colour, are you wearing a dress or pants, hair colour, girl or boy… CHEMIALS can also be grouped together into ACID, BASE or NEUTRALS.”

“Acids tend to taste SOUR and be CORROSIVE – like how eating lots of sugar CORRODES your teeth: it makes holes in them.”

“Bases tend to taste BITTER like coffee or dark chocolate, and feel SLIPPERY.”

“…Now who wants to test out some of our mystery CHEMICALS with the INDICATOR?”

IMG_3574Soft drink, sherbet, vinegar and lemon juice are all ACIDS: they are sugary and/or sour– that’s why it’s so important to brush your teeth after eating!

Mylanta, toothpaste and soap are all BASES. Mylanta helps to make your stomach LESS ACIDIC when you have eaten too much of the wrong food. Toothpaste helps protect your teeth from ACIDIC food. And soap feels SLIPPERY – remember?!

IMG_3601

Meanwhile, my assistant was taking on a more creative project: making lava lamps (as well teaching humans born in 2005 WHAT a lava lamp IS).

“Remember those molecules that are packed REALLY TIGHT in solids, LESS TIGHT in liquids and are LOOSELY packed in gases? Well, that tightness is referred to as DENSITY.”

The students then partook in an experiment and creative exercise involving six major components: an empty plastic bottle, water, vegetable oil, dissolvable aspirin, food colouring and air.

IMG_3583

Their first task (with the help of adults and an abundance of funnels) was to pour some oil and water together in their plastic bottle, then MIX it together. Of course, this was a clever trick. Why, you ask? Well of course the oil and water will not mix! It is because the oil is MORE DENSE than the water that it will sink to the bottom.

IMG_3603

Now for the creative part: the children could pick their favourite colours such that the water would change colour.

“What happens when you blow bubbles through a straw into your soft drink, other than your Mum and Dad getting annoyed?

The bubbles FLOAT: because they are full of AIR. What is AIR? It’s a GAS. What do we know about the density of GAS? Is it higher or lower than that of LIQUIDS? Of course it is LOW – which is why the bubbles rush to the top! So what do you think would happen if we put some GAS in the bottom of your bottle?

OK, but how are we going to get the GAS IN the bottle AND at the bottom?

Let me tell you about CHEMICAL REACTIONS. They are happening all the time! They happen in your tummy after you eat, they happen in the car’s engine, they happen when you cook food…and a lot of the time, these reactions will cause the production of GAS.

So we just need a chemical reaction to happen in the bottom of the bottle! And how do we do that? We use these special fizzy tablets (dissolvable aspirin) . They CHEMICALLY REACT with LIQUID…and give us a lovely lava lamp in the process!”

IMG_3612

Fantastic. It was time to move the scientists outside for the final installment of their training.

“What happens when you get in the bath? You have a wash? You get bubbles all over the floor? You splash your brother and sister? Great. Guess what else happens? The water moves up the edge of the bath – your body DISPLACES the water – so the water level rises.”

“What do you think would happen if we could DISPLACE the liquid from this soft drink bottle?”

“Do you think it might explode…?”

“OK how can we get GAS in the bottom of the bottle? I seem to recall having this problem before…? A CHEMICAL REACTION? Great, I have just the thing! These sweeties react with the soft drink and produce LOTS of GAS! Stand back…”

IMG_3639 IMG_3641 IMG_3646 IMG_3645

I was so proud to have my recruits graduate with flying colours. We celebrated with cake and hand-ball, and I am more than confident the students will go on to have a promising future in science.. saving the world, curing diseases, rescuing near extinct species. Nothing too lofty.IMG_3632 IMG_3671

Advertisements

Sneaking Around

Just a quickie.

So, my project took a bit of a turnaround this week when we FINALLY got access to our microarray software. We saw the same stuff we were seeing in our cancer cell line data, but in actual tumours. So now, my priority is to validate this in the tumour tissue, instead of in the treated cell lines.

Anyway, after all this (and having to write it all up for my mid-year progress report, then in an abstract for an upcoming conference), I got pretty excited to get cracking with the work. Only problem was, it was Friday evening before I knew it and I would have to wait until Monday until I could back in the lab. Unless…I came in at the weekend.

I tried to sneak out of my flat on Saturday morning, but my new room-mate caught me and asked where I was going. 

“Oh…into work…?”

“What? Why?”

“Well…things are getting kind of exciting and I’m pretty keen to get some results.”

“Oh that’s awesome news! Good for you!”

“…thanks…?”

I don’t know why I wasn’t expecting his support (he’s a scientist too). But it plastered a smile on my face, and (even though all my experiments failed that day) I’ll be keeping that moment in my memory bank for a while to come. It IS awesome! It IS good for me!